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Peter Wagner1

1Institute of Transport Research, German Aerospace Centre
Rutherfordstrasse 2, 12489 Berlin, Germany

(Dated: November 2, 2004)

By analyzing empirical time headway distributions of traffic flow, a hypothesis about the un-
derlying stochastic process can be drawn. The results found lead to the assumption that the
headways Ti of individual vehicles follow a linear stochastic process with multiplicative noise,
Ṫi = α(mT − Ti) + D Tiξ. The resulting stationary distribution has a power-law tail, especially
for densities where cars are interacting strongly. Analyzing additionally the headways for accelerat-
ing and decelerating cars, the slow-to-start effect proposed as a mechanism for traffic jam stability
can be demonstrated explicitly. Finally, the standard deviation of the speed differences between
following cars can be used to get a clear characterization of (at least) three different regimes of
traffic flow that can be identified in the data. Using the empirical results to enhance a microscopic
traffic flow model, it can be demonstrated that such a model describes the fluctuations of traffic flow
quite satisfactorily.

I. INTRODUCTION

Car drivers keep a certain distance to the car ahead,
the space headway g. It is defined as the distance between
the front bumper of the following to the rear bumper of
the leading car. Obviously, this distance depends on the
speed v of the cars, the bigger the speed, the bigger is
the distance. Therefore, it is useful to define the (net)
time headway T as the scaled distance:

T := g/v (1)

Very simple traffic flow models assume, that T is constant
for a given driver, or even constant for a given ensemble
of drivers. Although this is certainly not true, no ”law”
has been verified so far for the dependence of T on v.

Note, that the headway definition Eq. (1) is slightly dif-
ferent from the one usually used in the literature: there,

the time headway T̃ is defined as the time between two
cars which have passed the same detector. In case that
the cars do not accelerate, the two definitions coincide,
otherwise a correction has to be applied to transform T
into the headways that have been measured by those de-
tectors (let x(t) be the distance of the leading car to the
detector):

T =
g

v
=

1

v

∫ T̃

0

x(t)dt ≈ vT̃ + aT̃ 2/2

v
= T̃ +

a

2v
T̃ 2

Usually, a is small, so T ≈ T̃ follows, except for small v

and large T̃ .
In the following, the distribution of the headways p(T )

will be the object to study instead of individual head-
ways. It contains useful information about the inter-
action between the cars, and it is mostly responsible
for the fluctuations observed in traffic flow, even on a
macroscopic scale. Consequently, the traffic engineering
literature has a long record of different assumptions to
describe the empirically observed headway distributions
[1, 11, 28]. Usually, the underlying process is not stated

explicitly, except in the case of free flow, where a Poisso-
nian process is assumed. Clearly, three different regimes
of traffic can be observed, which have to be discussed
separately. For small speeds v, corresponding to a jam,
the empirical data are not sufficient to draw solid conclu-
sions. For large speeds, corresponding to free flow, the
distribution should finally approach a Poissonian distri-
bution since the cars do not interact with each other any-
more. The interesting regime is in between, for speeds in
the range 10 < v < 30 m/s, where cars are interacting
heavily.

Usually, variants of the Poisson distribution are be-
ing used for describing headway distributions. Two pop-
ular examples of this are the shifted exponential func-
tion p(T ) ∝ exp((T − T0)/mT ), or the Erlang func-
tion p(T ) ∝ T k exp(−T/mT ), where k is an integer.
Also, the log-normal function p(T ) = exp(−((log(T ) −
mT )/σ)2/2)/(

√
2πσT ) had been proposed for the head-

ways.
More appealing from a physical point of view is the

enterprize to relate the observed time headway distri-
butions to a one-dimensional electron gas with repelling
interactions [25, 26]. The latter idea leads to a so called
gamma distribution of the time headways that is given
as follows:

p(T ) =
(T − T0)

γ−1

Γ(α)mγ
T

exp

(
−T − T0

mT

)
T > T0 (2)

with the parameters T0 (minimum headway), mT (where
T0 + mT is the mean headway), and γ, the so called
shape parameter. (Traffic engineers name this distribu-
tion Pearson type III.)

All these approaches yield sensible results when com-
pared to reality. However, they are not completely con-
vincing, which can be seen by the fact that still no
common agreement in the ”right” formulation has been
emerged. Probably, this is due to a shortage in reliable
and statistically meaningful data. Fortunately, this is go-
ing to change, and this work has greatly benefitted from
the availability of more detailed microscopic data. The
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analysis presented below allow for an alternative formula-
tion, which will be worked out in the section II and will be
implemented in a certain microscopic car-following model
in section III. By doing so, conclusions can be drawn
about the macroscopic description of traffic flow.

II. MICROSCOPIC FUNDAMENTAL DIAGRAM

The vast majority of all traffic flow data are collected
by induction loops at a certain place on the road. There-
fore, just three things can be measured directly and easily
(if the detectors are double loop detectors): the speed vi
of each of the vehicles crossing the detector, the length li
of this vehicle and the time headway Ti between this and
the preceding car. When using the net headway, the un-
interesting dependence on the car-lengths drops out. The
plot of the net headways Ti as a function of the speeds vi,
or much better, the corresponding distribution p(v, T ),
will be called the microscopic fundamental diagram in
the following. An example is presented in Fig. 1, where
p(v, T ) has been drawn for the left lane of the German
freeway A3. Three regimes could be identified in Fig. 1.
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FIG. 1: Frequency distribution p(v, T ) of the net headways
T as function of speed v. The raw data are from the left
lane of the German autobahn A3 [23]. To determine the net
headways, only cars with roughly the same lengthes have been
used for this and in the subsequent analysis. This was neces-
sary, since the data contain only the gross headway and the
car lengthes.

A small speed regime, where the mean headway seems to
diverge. An intermediate regime, where the distribution
gets relatively small, and finally, the high speed regime
where the distribution and the mean headways get fairly
large.

The conventional macroscopic fundamental diagram
can be obtained from these data by plotting short-time
averages of the speed 〈v〉 versus flow q, where the latter
is computed as q = 1/〈T 〉 (with T the gross headway).

The distribution p(v, T ) has a direct relation to the un-
derlying microscopic states of the car-following process,
which makes it a very interesting object to study.

A. Headway distributions

One cut at constant speed of the distribution in Fig. 1
is drawn in Fig. 2. There, these distribution have been
compared to two of the headway distributions above, and
one labelled with SDE, which will be derived below:

p(T ) = N
(

1

T

)ψ
exp

(
−(ψ − 2)

mT

T

)
T ≥ 0. (3)

Differently from the other distributions, Eq. (3) has a
power-law decay for large headways, with exponent ψ ≈
4.

 0.001

 0.01

 0.1

 1

 0.2  0.4  0.8  1.6  3.2  6.4  12.8

p
(T

) 
[1

]

T [s]

data, v = 25 m/s
SDE

gamma
log-normal

FIG. 2: Frequency distribution p(T ) of the net headway T ,
left lane, German autobahn A3 [23], speed v = 25 m/s. The
empirical distribution is compared to a gamma distribution,
to a log-normal distribution and to a the distribution Eq. (3).
All functions describing the headway distributions have been
fitted to the data by a Levenberg-Marquadt algorithm.

As could be seen in the plots, the gamma-distribution
is not a bad fit. However, the curve labelled ”SDE” def-
initely yields the best overlap between data and model.
Additionally, this distribution needs just two parameters
instead of the three for the gamma-distribution and the
log-normal distribution. The curve SDE is the result of
assuming that the headway of any particular car-driver
unit is controlled by the following stochastic differential
equation (SDE)

Ṫ = α(mT (v) − T ) +D(v)Tξ, (4)

where 〈ξ(t)ξ(t′)〉 = δ(t − t′). Here, the constant α is
the inverse relaxation time after which the variable T re-
turns to mT , and D is the strength of the noise term
that disturbs the convergence to 〈T 〉. Both parameters
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mT and D may depend on the speed v of the cars. The
ansatz above is motivated by the idea that a driver has
a preferred headway mT , which she is not able to realize
exactly and instantaneously. This is, because human per-
ception and human reactions are usually rather sloppy.
Therefore, a certain time 1/α is needed before the pre-
ferred headway is reached, and the process is disturbed
by a stochastic term which models the uncertainty in
human perception and human reaction. It is quite nat-
urally to assume that this uncertainty becomes smaller
when the headway itself is smaller, this is modelled by
the multiplicative noise term DT ξ. A similar process
has been assumed in a completely different context of
econophysics. There, it is used to model the pricing of
options [20].

The stationary solution of the corresponding Fokker-
Planck equation to this SDE gives the distribution in
Eq. (3), with exponent ψ = 2 + 2α/D2 and the normal-
ization constant N :

N = mT

22α/D2 (〈T 〉α/D2
)2α/D2

Γ(2α/D2)

(Ito calculus, Stratonovich calculus yields a similar re-
sult). As can be seen in Fig. 2, this function yields
the best fit, especially for larger headways. Here, the
power-law behavior is dominant. Power-laws for differ-
ent traffic flow variables have been reported in the past
(often in simulations of different traffic flow models), see
[4, 29, 30, 33, 43] for examples. However, they are mostly
related to the distribution of the speeds, or the lifetime
of traffic jams. Rarely, the headway distributions have
been studied.

Therefore, from the analysis of the headway distribu-
tions, the hypothesis may be drawn that the preferred
headway of a given driver is not a constant but is driven
by a simple stochastic process. In the next section, this
hypothesis will be discussed again and compared to al-
ternative formulations that can generate the same distri-
bution.

B. Correlation times

What cannot be deduced from the freeway data is the
correlation times 1/α for the headway of a particular
car. The headway correlation function between differ-

ent cars that can be measured from the freeway data
is zero, i.e. the headways of different cars are uncorre-
lated. The autocorrelation function A(τ) of the headway
time-series T (t) of one particular car, however, displays
a finite memory. This can be seen in Fig. 3, where A(τ)
for four different cars are presented. They have been
computed from data recorded on a Japanese test track
[17, 42]. There, the trajectories of ten cars following a
lead car, all equipped with differential GPS, had been
measured. Similar results have been found in other car
following data sets as well; however, the decay times are

different. A couple of data sets describing car-following
processes have been made public, see [15]. Of course, if
the autocorrelation function follows a simple exponential
delay, namely:

A(τ) ∝ exp(−ατ), (5)

then the constant tR = 1/α is proportional to the re-
laxation time of the SDE (4). It is not equal to the
relaxation time, because the stochastic process driving
the headway is filtered through the set of differential
equations that describe the car-following dynamics un-
der the assumption that T is constant. The actual
result seems to be more complicated, it is consistent
with two superposed exponential decay curves A(τ) =
w exp(−τ/τfast) + (1 − w) exp(−τ/τslow), where the fast
decay happens within τfast = 2 . . . 6 s, while the slower
decay took about a factor of ten longer. In general, the
τi are shorter in dense traffic, for a more detailed analysis
the available database is still too narrow.
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FIG. 3: Autocorrelation function A(τ ) for the car-following
data, for four different drivers demonstrating individual dif-
ferences but the same overall behavior.

The two components of the autocorrelation function
can be traced back (not shown) to the autocorrelation
of the gaps (long-lived component) and of the speed-
differences (short-lived), respectively. (Both enter in the
computation of T = g/v.)

C. Dependence on speed

The parameters mT and D2/α may depend on speed,
too. For large speeds, mT diverges. This stems from
the bigger distances between the freely moving cars. Not
as simple to understand is the divergence for the small
speeds, later on this will be analyzed more detailed.
Additionally, there is an intermediate region, where the
mean headway depends in a non-trivial manner on the
speed of the cars, see Fig. 4. Between two values v1
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FIG. 4: Mean value of headway T as function of the speed v.
The upper plot is for the German freeway A3, while the lower
plot is for the California freeway I-880.

and v2 which depend on the circumstances (especially the
speed limit), the dependence of mT on speed becomes a
decreasing function of speed. This empirical finding has
been mentioned already in [39]. Note, that this is a real
effect, since there is no physical reason for the drivers
to relax, i.e. to drive with larger headways [44]. On the
contrary, anybody would be better off if car-drivers try
to keep those short headways, since it would increase the
throughput on a highway.

Although the most direct explanation for this depen-
dence of 〈T 〉 on speed v is that of more relaxed driving,
an alternative interpretation is possible. Assuming that
drivers have different driving attitudes, the increase in
headway may be related to a change in the driver popu-
lation. Borrowing from [7, 13] the self-explanatory terms
rabbits and slugs, it may be assumed that for the smaller
speeds more slugs populate the left lane, increasing the
mean headway.

Interestingly, this seems to be true only under certain
circumstances. It has been found in the data set from the
left lane of the German freeway A3, when looking on the

other lanes, the dependence is much less clear. Further-
more, drivers on American freeways seem to behave dif-
ferently. In [3] it is demonstrated, that the mean headway
is independent of speed. An analysis of data measured
in the FSP-project (data and description of this project
can be found at [15], too) and from another project on
the California freeways I-880 and I-80, respectively, sup-
port this result. Using once more the terms rabbits and
slugs above, on American freeways the different lanes are
more homogeneous, since there is no reason for the slugs
to stay on the right lane(s).

That is not all. As can be suspected, the noise
strength, too, is a function of speed, with D2/α decreas-
ing as speed decreases. This can be seen in Fig. 5. While

 0.1

 1

 10

 5  10  15  20  25  30  35

D
2 /α

 [
1]

v [m/s]

A3
I-880

FIG. 5: Noise strength D2/α as function of speed v. For
smaller speeds, the noise is smaller. The numbers for D2/α
have been obtained by fitting each pv(T ) histogram with a
Levenberg Marquadt algorithm. The I-880 site had a speed
limit of 55 mph (24.6 m/s), the data are restricted to the rush-
hours, so larger speeds than 22 m/s do not contain enough
statistical weight to allow for a similar analysis.

the overall dependence is the same for the US-example as
well as for the German A3 data, the width of the head-
way distribution in the American data is bigger by about
a factor of almost three.

D. Slow–to–start behavior

While the creation mechanism of jams is still contro-
versial, the fact that jams are stable can be understood
much more easily. The simplest idea that causes stable
jams is what has been called quite tellingly a slow-to-
start mechanism [37]. It is assumed, that a car leaving a
jam needs considerably more time-headway than what is
needed in maximum flow conditions. Already in [32] such
a mechanism is proposed, to explain the jam-waves ob-
served in the Holland tunnel in New York. However, the
empirical support reported so far is weak. E.g. the model
proposed in [32] assumes, that the fundamental diagram
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in the congested region consists of two branches, one for
accelerating and the other one for decelerating traffic.
Usually, the scatter in the empirical data is so big, that
the two branches are completely hidden by the scatter, if
they exist at all (see Fig. 6). Again, the single-car data
analyzed here help to explore this putative mechanism
in greater detail. This is displayed in Fig. 6. There, the
headway velocity data have been averaged for cars where
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FIG. 6: Slow-to-start behavior. Plotted is headway T versus
speed v. The filled area represents the center 80% of the
mass of the frequency distribution p(v, T ). The line labelled
acceleration is from cars where vi > vi−1 +vc holds, while the
braking line is from cars with vi < vi−1 − vc. The threshold
vc has been set to vc = 0.5 m/s.

acceleration or deceleration can be assumed. Since accel-
eration or deceleration is not measured in these data, it
is assumed that a car is accelerating when vi > vi−1 + vc
holds. Vice versa, if vi < vi−1 − vc holds, it is decelerat-
ing. Definitely, a more thorough analysis had to wait for
trajectory data. Currently, there are a couple of projects
running world-wide to collect those data, the one that is
probably most advanced is [14]. Nevertheless, two inter-
esting observations can be made already with the single
car data available for this study. First, there is indeed a
slow-to-start regime for speeds smaller than 5 m/s. By
comparing with a simulation where this feature has been
explicitly put in (see next section for details), it could
be stated that the increase in headway is not restricted
to accelerating cars. The simulation data coincide with
the empirical data only if the assumption is stated, that
for small speeds (below 5 m/s) car drivers increase their
time headway considerably.

The second interesting feature in Fig. 6 is that for
larger speeds there is a regime where the decelerating
cars (instead of the accelerating cars) have the larger time
headway. The latter feature is hard to understood right
now, it certainly needs more work to explain and is most
likely related to multi-lane phenomena.

E. Regimes of traffic flow

Figure 6 already demonstrates, that there are different
regimes of traffic flow which may be discernable on the
basis of the mean headway for accelerating and deceler-
ating cars. The different regimes can be demonstrated
more clearly by analyzing the standard deviation of the
speed differences between following cars:

∆2(v) =
1

N

N∑

i=1

(vi−vi−1)
2−
(

1

N

N∑

i=1

(vi − vi−1)

)2

. (6)

The speed v used for reference on the left hand side of
the equation is vi−1, i.e. the expression above measures
the width of the distribution of speed differences, which
in fact depends on the speed itself: for large speeds, cor-
responding to free flow conditions, speed differences can
be fairly large, while they become small under congested
conditions (smaller speed).

The function ∆(v) which is shown in Fig. 7 displays
a fairly complicated behavior. At least, three differ-

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  10  20  30  40  50  60

T
 [

s]
, <

(∆
v)

2 >1/
2  [

m
/s

]

v [m/s]

braking
accelerating

width ∆v

FIG. 7: The function ∆(v) for data from the German freeway
A3, together with the headway data determined as in Fig. 6,
plotted here for reference.

ent regimes can be separated: a small speed regime,
an regime of intermediate speeds where ∆v(v) is small
an roughly constant, and a high-speed regime, where
∆v(v) increases with speed. What all this means be-
comes clearer by looking at ∆v as function of the funda-
mental diagram. The region with comparably small ∆v

is found in the middle of the fundamental diagram, and
this is more or less the region that is usually identified
with synchronized flow (see [22] for a good summary of
all the previous work on synchronized flow). This means,
that the variable ∆v as defined above gives a fairly well
statistically meaningful characterization of the states of
traffic flow, which are associated with synchronized flow.
However, it could be stated that the region of small ∆v
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the left lane of the German freeway A3. Note the plateau of
constant σv (the contour lines labelled with 0.8 and 1.7 m/s).

extends to the left, into the high-flow regime. The high-
flow regime is assumed to be different from the synchro-
nized flow regime, however the Fig. 8 here suggests that
even the high flow state is just a synchronized state of
traffic flow. To make clear that this is different from the
view in [22], this entire region will be called homogeneous
flow of interacting cars in the following.

A similar conclusion has been drawn already in [18].
With respect to the interaction, it is quite naturally to
recognize high flow states as similar to the other states
where cars are interacting heavily: in both cases, the
driving behavior is very concentrated and attentive of the
surrounding cars, otherwise those high-flow states could
not be sustained.

To summarize, three different regimes of traffic flow
may be discerned clearly: the low demand regime, where
the headway distribution is Poissonian, the interaction
regime where headways are power-law distributed, and a
jammed region, where headways probably are something
different. The interaction-dominated regime is the one of
the small ∆v.

This issue will be discussed once more in the light of
the discussion about the model to be described next.

III. CONSEQUENCES

So far, empirical results have been presented. In this
section, the consequences for microscopic models will be
discussed. For the macroscopic models, similar ideas may
be followed.

Before explicitly demonstrating how the empirical re-
sults can be implemented into a certain microscopic
model of traffic flow, the basic assumption of this work
should be discussed more detailed. It has been assumed,

that the preferred headway of a driver follows a simple
stochastic process defined by Eq. (4). There are (at least)
two additional hypotheses that lead to the same or a sim-
ilar distribution. The first one is to assume that the Ti of
a driver is constant [8] and that the Ti of all the drivers
are distributed according to the distribution Eq. (3). The
second hypothesis assumes a stochastic process for T
without memory. Both hypotheses can be rejected: the
first alternative because the empirical data from the car-
following experiments demonstrate that T is not constant
for a particular driver. The second alternative can be
ruled out by comparing simulation results of the model
defined next with different stochastic processes for the
headway. This results in a headway distribution that is
definitely different for the white-noise assumption than it
is for a time headway driven by Eq. (4). (This does not
rule out that the mT of the drivers are distributed, too.)

A. Models

As a simple example, the model introduced in [24] will
be extended with the empirical results above. Obviously,
these results can be transferred to most of the known
models, provided they have something like a preferred
distance. While this will lead to the correct headway dis-
tribution, the macroscopic behavior of different models
might be different. The model [24], and a very simi-
lar model [16] can be derived from a safety condition,
namely:

d(vi) + vi Ti ≤ d(vi−1) + gi (7)

where the d(vi) = v2
i /(2b) are the braking distances of

the following (index i) and the leading car (index i− 1),
respectively. The deceleration b is understood as a com-
fortable braking deceleration, not the maximally possi-
ble one. The constant Ti is the preferred headway of the
driver, g⋆i = viTi. The equation above can be solved to
yield the safe speed:

v
(i)
safe = −bTi +

√
(bTi)2 + v2

i−1 + 2bgi. (8)

From this, the final model in [24] is constructed by as-
suming an update equation of the form (denoting time
as t and the time step size by h):

vi(t+ h) = min{vi(t) + aih, vsafe, vmax},
where the constants amax, vmax are parameters (maxi-
mum acceleration and maximum speed, respectively) of
the model. (The complete model additionally contains a
noise term.) However, this equation describes the speeds
and not the acceleration, the speed adapts to the safe ve-
locity almost instantaneously (within one time-step h).
To define an equation for the acceleration, the model
can be formulated similar to the optimal velocity mod-
els [2, 32]:

ai = (v
(i)
safe − vi)/Tacc (9)



7

This describes the relaxation of the current speed towards
the safe speed, with a time constant Tacc. This time con-
stant is basically the autocorrelation time of the result-
ing acceleration time series. Extracting this number from
an acceleration time-series typically gives values between
one and three seconds for this constant.

Equations (8),(9) define the deterministic part of the
model; it does not contain an explicit white noise term
that acts on the acceleration. This (white) acceleration
noise term that is often used in physical models of traffic
flow is clearly unrealistic, and the stochastic process de-
fined in Eq. (4) is an alternative. Together with a discrete
version of Eq. (4), the model is fully specified:

xi(t+ h) = xi(t) + vi(t)h (10)

vi(t+ h) = vi(t) + ai(t)h (11)

Ti(t+ h) = Ti(t) + αh(mT − Ti) +√
hDTiξi, (12)

with ai(t) as given in Eq. (9). Here, ξi(t) is a random
number in [−1, 1]. Formally, Gaussian random numbers
should be used here. To get a fast implementation, this
can be omitted [19]. Of course, to describe freeway traffic
realistically, mT (v), D(v), and the parameters needed by
the model have to be provided. They can be obtained
from the empirical data such as Fig. 4 or by directly
fitting this model to traffic flow data, see [5, 6] for ex-
amples. The numbers found from the freeway data are
α = 1/2 . . .1/5 s−1, D = 0.5, Tacc = 1.0 s.

The model can be made crash free by enforcing in each
update step vi ≤ vsafe.

A more detailed analysis of this new model will be per-
formed elsewhere. Here, the behavior of the model with
respect to the question of the traffic flow phases will be
discussed. However, even microscopically the model is in
line with two important empirical observations. First, it
yields the noisy oscillations in speed-difference headway
space, see Fig. 9. Secondly, the time headway distribu-
tion is very similar to the empirical headway distribu-
tions.

B. Macroscopic behavior

The model as defined above has only one solution as
function of the density: a homogeneous state, with a
width in the time headway distribution given by D2/α of
the SDE above. This can be seen in the fundamental dia-
gram, see Fig. 10. The mean value 〈v〉 of this distribution
is, of course, a function of density ρ = 1/(g + ℓ), where
ℓ is the length of a car, and ρmax = 1/ℓ is the maximum
density. It can be obtained approximately analytically
by setting ai = 0 in Eq. (9), integrating the resulting
expression over the distribution p(T ) of and solving for
v(g). This yields:

〈v(ρ)〉 ≈
{
vmax if ρ < ρc

1
mT

(1/ρ− ℓ) else
(13)

 15

 20

 25

 30

 35

 40

 45

-4 -3 -2 -1  0  1  2  3

g
 [

m
]

∆v [m/s]

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0.4  0.8  1.6  3.2  6.4

p
(T

) 
[1

]

T [s]

FIG. 9: Oscillations in speed difference ∆v, distance g space
(above) and the headway distribution (below) for a simulation
run with the model defined in Eqs (10) – (12). Parameters
are D = 0.5, α = 1/5 s−1, h = 0.4 s, mT = 1 s. The driving
parameters were set to amax = 1.5 m/s2, b = 2 m/s2, and
vmax = 31 m/s. A simulation with n = 200 cars on a closed
loop was run for 10000 s before data were sampled for another
10000 s.

This formula fits quite well the simulated fundamental
diagram, however a slightly larger value of mT is needed
to obtain an exact fit.

However, the model is not complete, because it lacks
a mechanism that stabilizes a jam once it is created. As
pointed out above, the empirical data analyzed above
seem to support the idea of a slow-to-start mechanism.
There are different means to implement such a mecha-
nism. The one chosen here is to alter the relation for
vsafe by making vsafe smaller for small speeds. This is
done in Eq. (7) to arrive at a modified ṽsafe:

ṽ
(i)
safe =

{
vsafe − ǫ(vi − vc) if v < vc
vsafe else

(14)

Of course, ṽsafe > 0 must be demanded explicitly.
This changes the behavior of the model. It becomes

bistable in some regions of the control parameter space
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FIG. 10: Fundamental diagram of the model Eqs (10) – (12).
Parameters and simulation set-up are the same as in Fig. 9.

ρ,D. The corresponding phase diagram is displayed in
Fig. 11. To demonstrate bistability, the system has been
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FIG. 11: Phase diagram of the model Eqs (10) – (12). Param-
eters are as in Fig. 9, additionally a slow-to-start mechanism
as in Eq.14 has been adopted. Simulation has been run for
40000 s, with 500 cars for each value of ρ and D. See text for
details on how the separating lines have been obtained.

started either in a jammed state or in a homogeneous
state. After running for 40000 s, the probability dis-
tributions phom(v) and pjam(v) are being analyzed. For
bistable parameter values, there should be a difference
between the two distributions, which can be measured
by computing η =

∫
phom(v)− pjam(v)dv. This is a num-

ber between zero and one, with η = 0 indicating equal
outcomes of the simulation. The shaded area in the plot
above is the area where η > 0.1.

The different areas free flow, jammed flow, mixed flow,
and unstructured have been assigned on the basis of the
standard deviation of the speed σ(ρ,D) which can be

computed from p(v), too. The whole approach is very
similar to [21]. Let’s start with the unstructured state.
When increasing the noiseD of the headway distribution,
the speed distribution must finally approach the constant
distribution in [0, vmax], with standard deviation σ =:

σ∞ = vmax/
√

12. The simulation results confirm this.
This state may be called, in analogy with equilibrium
thermodynamics, the high temperature state.

For smaller values of D, the system can be in three dif-
ferent states: a free flow state, where all cars move with
approximately the free speed, the jammed state where all
cars move with small speeds near zero, and a mixed state
where the system consists of a mixture of freely moving
and jammed cars. This picture of nucleation is quite
familiar from the theory of (equilibrium) phase transi-
tions. Additionally, the system may be in the homoge-
neous state, where all cars move with the same speed,
which is smaller than the free flow speed. For small D,
the standard deviation of speed therefore is very small
for small densities, since p(v) is close to a delta-function
there. The same is true for very large densities. In be-
tween, the system may consist of a mixture of jammed
and free driving cars, in this case the standard deviation
of speed becomes maximal, because p(v) consists of two
delta-peaks located at v = 0 and v = vmax, respectively.
In this case, σ = vmax/2. For moderate values of D,
the peaks are wider, therefore σ descreases until it finally
reaches σ∞.

Therefore, the line where σ = σ∞ can be used to dis-
cern these states, and that is what is drawn in Fig. 11.

The homogeneous state, which does not fit into the
picture borrowed from thermodynamics, is stable only
for small ρ and small D, for larger values it decays. With
respect to phenomenology of traffic flow, it is important
that there is a region in this phase diagram the homoge-
neous state co-exist with the mixed state, at least to the
time resolution applied here (each simulation for each of
the data-points ρ,D has been run for 40000 s). What
happens depends on the initial conditions, or, in the case
of an open system, on the boundary conditions applied.
Such a bistability is a very attractive feature, since it
gives an idea why different states of traffic may be ob-
served in cases where anything else is identical. This gets
additional back-up with the observation, that the empir-
ical data leads to a value of D = 0.5, which is in the
bistable region (depending, of course, on ρ).

C. Comparison with empirical data

The model compares qualitatively very well with real
data. However, it is still not a good model in the sense of
comparing well even quantitatively with empirical traffic
flow data. However, on the level of macroscopic measures
like the headway distribution p(v, T ), the comparison is
quite successful, as Fig. 12 demonstrates. There, the mi-
croscopic fundamental diagram has been compared with
the empirical one. Although such comparisons are of lim-
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FIG. 12: The 25th-percentile and the 75th-percentile lines
of the empirical probability distribution p(v, T ) compared to
simulation data. For the simulation, the same set-up as in
Fig. 9 has been adopted. The simulation data are from a scan
of the fundamental diagram, i.e. a simulation has been run
for different densities.

ited value, it demonstrates that at least the fluctuations
of traffic flow are well described by the model introduced
here.

To make this comparison more quantitative, new fea-
tures must added. These include, but are not restricted
to, good ideas how crash-freeness is achieved by human
drivers, anticipation to the behavior of other cars in front,
more details on how the acceleration is chosen by a driver,
issues related to driver inhomogeneity, and multi-lane
modelling, see [42] for more details.

IV. CONCLUSIONS

A. Synchronized flow

As discussed already in section II E, the states of traf-
fic flow where the interaction between the cars is impor-
tant have a relation to the synchronized traffic flow. We
will not enter the discussion about the truly complicated
phenomenology of synchronized flow, see [22] for details
on that. However, a synthesis is tried that unifies the
simulation results with the empirical results, and further
more, may bring together the different views about syn-
chronized flow put forward so far (see [12, 22, 27]).

The idea here, which is motivated by the surprising sta-
bility of the homogeneous flow of the traffic flow model
above (and in fact of most traffic flow models, to make
them truly unstable is not a simple task), is as follows.
There is a large region of traffic flow states where the
homogeneous state as function of density is stable. Defi-
nitely, homogeneous does not mean that the relevant vari-
ables like flow, density, and speed are distributed sharply.
In fact, this work here is about a clean description of the

fluctuations in the headways of the cars, so homogeneous
means a distribution of a certain width. Only for very
large densities, or for truly strong external perturbations,
there is in fact an instability where breakdowns could oc-
cur. These breakdowns are probably related to the pinch
effect described in [22].

So, when such a system is regarded on a closed loop (no
boundary effects are present), just three different states
might be possible: a free flow state with a Poissonian
headway distribution, a homogeneous state with a power-
law headway distribution, and a jammed region. In a
certain range of densities and noise amplitudes D the
jammed state and the homogeneous state are both sta-
ble, i.e. different initial conditions lead to different final
states. Whether or not there is a phase transition in the
sense of non-equilibrium physics between these different
states is right know not clear. Even if the system man-
ages to stay at the homogeneous state while increasing
the density, there is a transition where the Poissonian
distribution is translated into the power law distribu-
tion. Although there is a really nice symmetry between
these two states (the gamma distribution for T trans-
forms into the power-law distribution under the transfor-
mation T → 1/T ), it is not clear whether this is in fact a
phase transition. But even if it is, it is one of second or
even higher order, because nothing jumps here: it is sim-
ply the number of cars that drive freely which is reduced
until finally all cars are following its lead car, without
any chance to overtake.

In the case of an open system, more can happen. Any
capacity drop downstream caused by an incident, or a
change of inflow at an on-ramp, causes what have been
called the back-of-the-queue states, and the transition
from apparently free flow into this state is a discontin-
uous, first order phase transition. (Speed jumps from
a large to an intermediate value.) This congested state
with reduced speed is exactly what has been called ho-
mogeneous flow of interacting cars above. In fact, some
of the data analyzed in this contribution (data from the
I-80 in California) are from a site where a toll station
exists downstream which causes the daily break-down in
this area.

This is in line with theoretical considerations about
very simple open traffic flow systems. There, it could
be demonstrated explicitly, that the transition from a
free flow state to the congested flow dominated by the
capacity constraints downstream, is in fact a first-order
transition [9, 10, 31, 34, 35, 36, 38, 40]. So, what may
look like a first order transition of the bulk system might
in fact be a transition caused by the boundary.

B. More general remarks

There is one final question to be answered: why is the
headway driven by such a process? Part of the answer
might be what has been proposed recently as the human
driver model [41]. There, it is assumed that a driver
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is simply not capable of estimating the distance and the
speed difference to the car in front timely and accurately.
This is certainly true, and the autocorrelation results pre-
sented in this paper lend empirical support to such an
idea. However, it introduces two things that are truly
hard to measure: how wrong do humans estimate these
two numbers, and how do they modify their outdated
measurements. It should be simple to demonstrate, that
in the context of the model above, this assumption leads
to a similar result for the time headway distribution,
however, preliminary simulation results demonstrate that
the resulting model displays a different behavior, so this
needs a completely fresh approach. Unfortunately, [41]
does not provide any details on the resulting frequency
distributions. Proposing just one stochastic process for
the time headway alone is more in line with Occam’s
razor asking for the smallest number of assumptions nec-
essary. And, in this case, parts of this assumed stochastic
process can be measured almost directly. For example,
except for the relaxation time of the SDE Eq. (4), all the
parameters that enter into the model proposed here can
be measured explicitly. Nevertheless, assuming a head-
way driven by such a stochastic process is for sure not a

complete description of reality: to do that, much more
work on the psychology of human driving needs to be
done. Nevertheless, the results achieved here can be sum-
marized as follows. The model proposed here is a model
in the best sense: as minimal as possible (hopefully), a
little bit abstract, and (certainly) a little bit wrong.
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